Skip to content

Q3

← Back

Basic Info

Probability
└── Homework
    └── W5
        └── Q3.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#5}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 3}

    \noindent Three fair dice are thrown. Let $X$ denote the number of dice that land with the same number of dots. Describe the probability distribution function of $X$.

    \bigskip

    \begin{enumerate}[label={},leftmargin=0in]\item
        \subsection*{Solution}

            By applying the principle of symmetry, easy to define the probability space as

            \[
            \begin{aligned}
                \Omega &= \{1,2,\dots,6\}\\
                \mathcal{F} &= \mathcal{P}(\Omega)\\
                \bP &:\enspace \bP(\{1\}) = \bP(\{2\}) = \dots = \bP(\{6\}) = \frac{1}{6}
            \end{aligned}
            \]

            Then as given, we have

            \[X:\enspace \Omega \rightarrow R,\quad R = \{1,2,3\}\]

            Then we have the $pdf$ of $X$

            \[
            p(x) =
            \begin{cases}
                \begin{aligned}
                    \frac{6\times 5\times 4}{6^3} &= \frac{5}{9},&\quad x = 1\\
                    \frac{6\times 3\times 5}{6^3} &= \frac{5}{12},&\quad x = 2\\
                    \frac{6}{6^3} &= \frac{1}{36},&\quad x = 3
                \end{aligned}
            \end{cases}
            \]

            Or a general formula, with $N_i \in \{1,2,3\},\, i\in \{1,2,\dots,6\}$ denotes the absolute frequency of every face ($i.e.$ $N_1 = 2$ means that face $1$ shows $2$ times)

            \[
                p(x) = \frac{1}{6^3}\sum_{\sum_{i=1}^6N_i=3}\frac{3!}{N_1!N_2!\dots N_6!},\quad \max(\{N_1,N_2,\dots,N_6\}) = x,\quad x\in R
            \]

        \subsection*{Answer}

            \[\boxed{p(x) =
                \begin{cases}
                    \begin{aligned}
                        \frac{5}{9},&\quad x = 1\\
                        \frac{5}{12},&\quad x = 2\\
                        \frac{1}{36},&\quad x = 3
                    \end{aligned}
            \end{cases}}\]
    \end{enumerate}

\end{document}