Skip to content

Q2

← Back

Basic Info

Probability
└── Homework
    └── W6
        └── Q2.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#6}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 2}

    \noindent An urn contains six balls, numbered $1$ to $6$. Two balls are drawn at random, without replacement. Let $X$ be the difference between the larger and smaller of the two numbers drawn. What is the probability distribution of $X$?

    \bigskip

    \begin{enumerate}[label={},leftmargin=0in]\item
        \subsection*{Solution}

            By applying the principle of symmetry, easy to define the probability space as

            \[
            \begin{aligned}
                \Omega &= \{1,2,\dots,6\}\\
                \mathcal{F} &= \mathcal{P}(\Omega)\\
                \bP &:\enspace \bP(\{1,2\}) = \bP(\{1,3\}) = \dots = \bP(\{6,5\}) = \frac{1}{6}\times \frac{1}{5} = \frac{1}{30}
            \end{aligned}
            \]

            Then we have the $pdf$ of $X$

            \[
                p(x) =
                \begin{cases}
                    \begin{aligned}
                        \bP(X = 1) &= \bP(\{1,2\},\{2,1\},\dots,\{6,5\}) &= \frac{5}{15} &\approx 0.333,&\quad x = 1\\
                        \bP(X = 2) &= \bP(\{1,3\},\{2,4\},\dots,\{6,4\}) &= \frac{4}{15} &\approx 0.267,&\quad x = 2\\
                        \bP(X = 3) &= \bP(\{1,4\},\{2,5\},\dots,\{6,3\}) &= \frac{3}{15} &= 0.2,&\quad x = 3\\
                        \bP(X = 4) &= \bP(\{1,5\},\{2,6\},\dots,\{6,2\}) &= \frac{2}{15} &\approx 0.133,&\quad x = 4\\
                        \bP(X = 5) &= \bP(\{1,6\},\{6,1\}) &= \frac{1}{15} &\approx 0.067,&\quad x = 5
                    \end{aligned}
                \end{cases}
            \]

            Or a general formula without cases

            \[p(x) = \frac{6-x}{\dbinom{6}{2}} = \frac{6-x}{15},\quad x\in\{1,2,\dots,5\}\]

        \subsection*{Answer}

            \[\boxed{p(x) =
                \begin{cases}
                    \begin{aligned}
                        \frac{5}{15} &\approx 0.333,&\quad x = 1\\
                        \frac{4}{15} &\approx 0.267,&\quad x = 2\\
                        \frac{3}{15} &= 0.2,&\quad x = 3\\
                        \frac{2}{15} &\approx 0.133,&\quad x = 4\\
                        \frac{1}{15} &\approx 0.067,&\quad x = 5
                    \end{aligned}
            \end{cases}}\]
    \end{enumerate}

\end{document}