Skip to content

Q3

← Back

Basic Info

Probability
└── Homework
    └── W6
        └── Q3.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#6}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 3}

    \noindent Alice proposes to Bob the following bet. Alice tosses a fair coin n times, and computes the number of heads $X$. Bob tosses the coin $n+1$ times, and obtain $Y$ heads. Bob wins the bet if $Y > X$.

    \bigskip

    \begin{enumerate}[start=1,label={\bfseries Part \arabic*:},leftmargin=0in]
        \bigskip\item Is the bet fair?

        \subsection*{Solution}

            As given, we can define the Bernoulli distribution with sample space $\Omega = \{\text{head},\text{tail}\}$ ($head$ denotes $drop\enspace headed$ and $tail$ denotes $drop\enspace tailed$) and with parameter $p = 0.5$ (by applying the principle of symmetry), then we can define the Binomial distribution of both $X$ and $Y$ as

            \[
                \begin{aligned}
                    X\sim &\text{Bin}(n,p)\\
                    Y\sim &\text{Bin}(n+1,p)
                \end{aligned}
            \]

            Let as define $Z = Y - X$, then we have

            \[Z\sim \text{Bin}(1,p)\]

            Then we have the distribution of $Z$

            \[
                p(z) =
                \begin{cases}
                    \begin{aligned}
                        0.5,\quad z = 0\\
                        0.5,\quad z = 1
                    \end{aligned}
                \end{cases}
            \]

            That is

            \[
                \begin{aligned}
                    \bP(Y > X) &= \bP(Z > 0)\\
                    &= \frac{p(1)}{p(0) + p(1)}\\
                    &= \frac{1}{2}
                \end{aligned}
            \]

        \subsection*{Answer}

            \[\boxed{\text{Fair.}}\]

        \bigskip\item Compute the answer for a general coin.

        \subsection*{Solution}

            Here we let $p_g$ denote a random variable in $(0,1)$, then we have the $Z$ in general case

            \[Z_g\sim \text{Bin}(1,p_g)\]

            Then we have the distribution of $Z_g$

            \[
                p_g(z) =
                \begin{cases}
                    \begin{aligned}
                        1-p_g,\quad z = 0\\
                        p_g,\quad z = 1
                    \end{aligned}
                \end{cases}
            \]

            By denoting $X$ and $Y$ in general case as $X_g$ and $Y_g$, we have

            \[
                \begin{aligned}
                    \bP(Y_g > X_g) &= \bP(Z_g > 0)\\
                    &= \frac{p_g(1)}{p_g(0) + p_g(1)}\\
                    &= p_g
                \end{aligned}
            \]

            That is

            \[
                \text{Bet is}
                \begin{cases}
                    \begin{aligned}
                        \text{Unfair, Alice tends to win more},&\quad p_g < 0.5\\
                        \text{Fair},&\quad p_g = 0.5\\
                        \text{Unfair, Bob tends to win more},&\quad p_g > 0.5
                    \end{aligned}
                \end{cases}
            \]

        \subsection*{Answer}

            \[\boxed{\text{Bet is}
                \begin{cases}
                    \begin{aligned}
                        \text{Unfair, Alice tends to win more},&\quad p_g < 0.5\\
                        \text{Fair},&\quad p_g = 0.5\\
                        \text{Unfair, Bob tends to win more},&\quad p_g > 0.5
                    \end{aligned}
            \end{cases}}\]
    \end{enumerate}

\end{document}