Skip to content

Q4

← Back

Basic Info

Probability
└── Homework
    └── W6
        └── Q4.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#6}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 4}

    \noindent Let $X$ be a discrete random variable with the following probability distribution function (PDF):

    \[
        p_X(k) =
        \begin{cases}
            \begin{aligned}
                \frac{1}{4}, &\quad k = -2\\
                \frac{1}{8}, &\quad k = -1\\
                \frac{1}{8}, &\quad k = 0\\
                \frac{1}{4}, &\quad k = 1\\
                \frac{1}{4}, &\quad k = 2\\
                0, &\quad \text{otherwise}
            \end{aligned}
        \end{cases}
    \]

    \noindent We define a new random variable $Y$ as $Y = (X + 1)^2$. Find the probability distribution function (PDF) of $Y$.

    \bigskip

    \begin{enumerate}[label={},leftmargin=0in]\item
        \subsection*{Solution}

            Easy to see that

            \[
                \begin{tabular}{|c|c|c|}
                    \hline
                    $X$  & $(X+1)^2=Y$ & $\bP(X)$       \\ \hline
                    $-2$ & $1$         & $\frac{1}{4}$  \\ \hline
                    $-1$ & $0$         & $\frac{1}{8}$  \\ \hline
                    $0$  & $1$         & $\frac{1}{8}$  \\ \hline
                    $1$  & $4$         & $\frac{1}{4}$  \\ \hline
                    $2$  & $9$         & $\frac{1}{4}$  \\ \hline
                \end{tabular}
            \]

            Then we have the $pdf$ of $Y$

            \[
                p_Y(k) =
                \begin{cases}
                    \begin{aligned}
                        \frac{1}{8}, &\quad k = 0\\
                        \frac{1}{4} + \frac{1}{8} = \frac{3}{8}, &\quad k = 1\\
                        \frac{1}{4}, &\quad k = 4\\
                        \frac{1}{4}, &\quad k = 9\\
                        0, &\quad \text{otherwise}
                    \end{aligned}
                \end{cases}
            \]

        \subsection*{Answer}

            \[\boxed{p_Y(k) =
                \begin{cases}
                    \begin{aligned}
                        \frac{1}{8}, &\quad k = 0\\
                        \frac{3}{8}, &\quad k = 1\\
                        \frac{1}{4}, &\quad k = 4\\
                        \frac{1}{4}, &\quad k = 9\\
                        0, &\quad \text{otherwise}
                    \end{aligned}
            \end{cases}}\]
    \end{enumerate}

\end{document}