Skip to content

Q1

← Back

Basic Info

Probability
└── Homework
    └── W7
        └── Q1.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#7}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bE}{\mathbb{E}}
\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 1}

    \noindent Eight thousand lottery tickets are sold for \$5 each.

    \bigskip

    \noindent One ticket will win $\$2,000$, two tickets will win $\$750$ each, and five tickets will win $\$100$ each.

    \bigskip

    \begin{enumerate}[start=1,label={\bfseries Part \arabic*:},leftmargin=0in]
        \bigskip\item Let $X$ denote the net gain from the purchase of a randomly selected ticket. Construct the probability distribution of $X$.

        \subsection*{Solution}

            Easy to get the $pdf$ of $X$

            \[
                p(x) =
                \begin{cases}
                    \begin{aligned}
                        \frac{1}{8\,000},&\quad x = 2\,000 - 5 &= 1\,995\\
                        \frac{2}{8\,000},&\quad x = 750 - 5 &= 745\\
                        \frac{5}{8\,000},&\quad x = 100 - 5 &= 95\\
                        \frac{8\,000 - 1 - 2 - 5}{8\,000} = \frac{7\,992}{8000},&\quad x = 0 - 5 &= -5
                    \end{aligned}
                \end{cases}
            \]

        \subsection*{Answer}

            \[\boxed{p(x) =
                \begin{cases}
                    \begin{aligned}
                        \frac{1}{8\,000},&\quad x = 1\,995\\
                        \frac{2}{8\,000},&\quad x = 745\\
                        \frac{5}{8\,000},&\quad x = 95\\
                        \frac{7\,992}{8000},&\quad x = -5
                    \end{aligned}
            \end{cases}}\]

        \bigskip\item Compute the expected value $\mu$ of $X$ and intepret its meaning.

        \subsection*{Solution}

            As given, easy to get

            \[
                \begin{aligned}
                    \mu &= 1\,995p(1\,995) + 745p(745) + 95p(95) + -5p(-5)\\
                    &= \frac{399}{1\,600} + \frac{149}{800} + \frac{19}{320} - \frac{999}{200}\\
                    &= -\frac{9}{2}
                \end{aligned}
            \]

        \subsection*{Answer}

            \[\boxed{\mu = -\frac{9}{2}}\]

        \bigskip\item Compute the standard deviation $\sigma$ of $X$.

        \subsection*{Solution}

            Easy to get

            \[
                \begin{aligned}
                    \sigma &= \sqrt{-\mu^2 + \bE\left[X^2\right]}\\
                    &= \sqrt{-\mu^2 + \left(1\,995^2p(1\,995) + 745^2p(745) + 95^2p(95) + (-5)^2p(-5)\right)}\\
                    &= \sqrt{-\frac{81}{4} + \left(\frac{398\,0025 + 111\,0050 + 45\,125 + 199\,800}{8\,000}\right)}\\
                    &= \sqrt{\frac{5\,173}{8}}\\
                    &\approx 25.429
                \end{aligned}
            \]

        \subsection*{Answer}

            \[\boxed{\sigma = \sqrt{\frac{5\,173}{8}} \approx 25.429}\]
    \end{enumerate}

\end{document}