Skip to content

Q4

← Back

Basic Info

Probability
└── Homework
    └── W7
        └── Q4.tex

Preview

\documentclass[12pt]{article}

\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage[margin=1in]{geometry}
\usepackage{fancyhdr}
\usepackage{enumerate}
\usepackage[shortlabels]{enumitem}

\pagestyle{fancy}
\fancyhead[l]{Li Yifeng}
\fancyhead[c]{Homework \#7}
\fancyhead[r]{\today}
\fancyfoot[c]{\thepage}
\renewcommand{\headrulewidth}{0.2pt}
\setlength{\headheight}{15pt}

\newcommand{\bE}{\mathbb{E}}
\newcommand{\bP}{\mathbb{P}}

\begin{document}

    \section*{Question 4}

    \noindent An insurance company will sell a $\$90,000$ one-year term life insurance policy to an individual in a particular risk group for a premium of $\$478$.

    \bigskip

    \noindent Find the expected value to the company of a single policy if a person in this risk group has a $99.62\%$ chance of surviving one year.

    \bigskip

    \begin{enumerate}[label={},leftmargin=0in]\item
        \subsection*{Solution}

            Let $X$ be the random variable of the net gain of the company from a policy, then easy to get the $pdf$ of $X$

            \[
                p(x) =
                \begin{cases}
                    \begin{aligned}
                        1 - 99.62\% = 0.38\%,&\quad x = 478 - 90\,000 = -89\,522\\
                        99.62\%,&\quad x = 478
                    \end{aligned}
                \end{cases}
            \]

            Then we have the expectation of $X$

            \[
                \begin{aligned}
                    \bE[X] &= -89\,552p(-89\,552) + 478p(478)\\
                    &= -89\,522(0.38\%) + 478(99.62\%)\\
                    &= 136
                \end{aligned}
            \]

        \subsection*{Answer}

            \[\boxed{\bE[X] = 136}\]
    \end{enumerate}

\end{document}